Manual Aerodynamic Optimization of Oblique Flying Wing

Helmut Sobieczky, Monika Hannemann
DLR German Aerospace Center
Göttingen, Germany

A. Richard Seebass, Pei Li
University of Colorado
Boulder, CO, USA

21st Congress of the
International Council of the Aeronautical Sciences
INTRODUCTION
Oblique Flying Wing (OFW)

Optimum aerodynamics: Efficient at subsonic, transonic & supersonic Mach numbers by variable sweep.

Optimum structure: Lift is produced where load is located.

Passenger transport: Passenger size defines min. wing section thickness, Aerodynamics defines min. airfoil chord, Efficiency defines min. wing span.

Example: ~800 pax OFW with large aspect ratio at Mach ~ 1.4; Manual optimization for better understanding of aerodynamic phenomena.
DESIGN TOOLS
Supporting theories and geometry definition

Supersonic aerodynamics:
Area rule (Lomax)
Minimum drag bodies (Sears, Haack, v.Karman)

Transonic aerodynamics:
Supercritical airfoils
Swept wings

Shape definition:
Geometry preprocessor for aerodynamic applications,
Parameter variation tailored by supporting theories.
OFW
Constraints for shape definition

Elliptic lift distribution:
\[
load \sim Y^{1/2}(1-Y)^{1/2}
\]

Minimum drag equivalent body of revolution:
\[
area \sim Y^{3/2}(1-Y)^{3/2}
\]

Baseline shape:
elliptic wing planform, parabolic bending.
SUPersonic theory

Comparison linear theory vs. CFD results

Elliptic wing, Sears-Haack area distribution:

symmetrical airfoil sections

drag coefficients resulting from linear theory and Euler CFD

\[\frac{C_{D,N}}{C_{D,T}} \]

\[\tau = \frac{t}{c} \]

\[\lambda = 60^\circ \]

\[M_\infty = \sqrt{2} \]
TRANSONIC THEORY
Definition of thick baseline wing sections

Preliminary design: Thick shock-free wing section

Method: Fict. Gas, inviscid flow

Application of swept wing theory

Example: \(M_n = 0.707, c_l = 0.6, \tau = 0.17 \)

Extraction of geometric parameters for airfoil definition
GEOMETRY GENERATOR

Wing tool with spanwise airfoil variation

Spanwise definition by shape functions:

- planform, twist, dihedral, thickness factor
- and
- 11 airfoil parameters, \(\mathbf{p} = (r_{le}, X_{up}, \ldots) \)
OFW
Spanwise parameter definition

11 airfoil parameters,
6 wing parameters:

...defined by simple functions along span,

controlling linear theories constraints,

supporting elliptic load distribution & reduced cross flow shocks
NUMERICAL ANALYSIS
Inviscid Flow

Computational grid: O-O, 193 x 41 x 33 pts

CFD code: CFL3D (Euler version).

Manual optimization process:
analysis runs at design conditions,
check of elliptic load approximation and
sectional pressure distributions,
--> selected parameter adjustments.

Improvements after 22 runs:
L/D from 14 to 21.3
section thickness from 17 to 19%
OOF: CFD ANALYSIS
Inviscid flow results

Chordwise pressure and spanwise load distribution

$M_\infty = 1.41$
$\lambda = 60^\circ$
OFW: CFD ANALYSIS

Inviscid flow results for varying sweep and lift

\[\lambda = 60^\circ, C_L = 0.145, L/D = 21.3 \]

\[\lambda = 65^\circ, C_L = 0.122, L/D = 30.3 \]

\[M_\infty = 1.41 \]
OFW: CFD ANALYSIS

Inviscid flow visualization: isobars

$M_\infty = 1.41$

$\lambda = 60^\circ$
OFW: CFD ANALYSIS

$M_\infty = 1.41$, inviscid flow, variation of sweep angle and lift

$\lambda = 60^\circ$
$C_L = 0.145$
$L/D = 21.3$

$\lambda = 65^\circ$
$C_L = 0.122$
$L/D = 30.3$
OFW: CFD ANALYSIS

Inviscid flow quality at design conditions

Isobar distribution visualization on wing surface and along CFD grid surfaces

\[M_\infty = 1.41, \ \lambda = 60^\circ, \ \text{C}_L = 0.145, \ \text{L/D} = 21.3 \]
OFW: CFD ANALYSIS

Inviscid flow quality at optimum L/D conditions

Isobar distribution visualization on wing surface and along CFD grid surfaces

\[M_\infty = 1.41, \, \lambda = 65^\circ, \, C_L = 0.122, \, L/D = 30.3 \]
OFW: CFD ANALYSIS

Inviscid lift / drag as a function of lift coefficient and sweep angle, $M_\infty = 1.41$

\[\lambda = 60^\circ \]

\[C_L = 0.135 \]

\[\lambda = 68^\circ \]
VISCOUS EFFECTS

Drag = Lift \{ (D/L)_{inviscid} + 2 \frac{C_F}{C_L} \}

\(M_{\infty} = 1.41, \lambda = 68^\circ \)

Reynolds number, skin friction coefficient, lift coefficient and drag-to-lift ratio as a function of flight altitude (linear theory)
OFW: OFF-DESIGN RESULTS

Euler CFD results

\[C_L = 0.24, \ M_\infty = 0.8 \]

\[C_L = 0.224, \ M_\infty = 1.1 \]

Sweep variation at fixed \(C_L \) and \(M_\infty \)
OBLIQUE FLYING WING

Test case for aerodynamic optimization

\[M_\infty = 1.41 \]

Design \[\lambda = 60^\circ \]
- \[C_L = 0.145 \]
- \[L/D_{inv} = 21.3 \]

CFL3D Euler analysis

Optimum \[\lambda = 65^\circ \]
- \[Re = 3 \times 10^8 \]
- \[C_L = 0.122 \]
- \[L/D_{visc} = 17.1 \]
OFW: SHOCK STRUCTURE
Visualization of bow and tail wave system

$M_\infty = 1.41,$
$\lambda = 60^\circ$
SONIC BOOM OF AN OBLIQUE FLYING WING AIRCRAFT

\[M_\infty = 1.414, \ h = 12.6 \ km \]

Front shock strength \(\Delta p \)
SONIC BOOM OF AN OBLIQUE FLYING WING AIRCRAFT

\[M_\infty = 1.414, \ h = 12.6 \ km \]

Pressure signature \(\Delta p \) on the ground

\[\Delta p \ [N/m^2] \]

\[y \ [km] \]

\[x - x_o \ [km] \]

\[-0.25 \]

\[0.25 \]

\[-25 \]

\[25 \]
OBLIQUE FLYING WING
Test case for multidisciplinary optimization

Interior structures
Control surfaces
Configuration integration
CONCLUSIONS

Results for candidate OFW:

climb
Mach = 0.8
ML/D = 24.9
sweep = 40°
alitude = 30800 ft

accelerate
Mach = 1.1
ML/D = 23.7
sweep = 56°
alitude = 41300 ft

cruise
Mach = 1.41
ML/D = 24.2
sweep = 65°
alitude = 41300 ft

Results for systematic design tools development:
A manual design and optimization exercise for a novel HSCT configuration,
providing
parameter identification for notable aerodynamic performance improvements.